If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18+9=0
We add all the numbers together, and all the variables
3x^2-9=0
a = 3; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·3·(-9)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{3}}{2*3}=\frac{0-6\sqrt{3}}{6} =-\frac{6\sqrt{3}}{6} =-\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{3}}{2*3}=\frac{0+6\sqrt{3}}{6} =\frac{6\sqrt{3}}{6} =\sqrt{3} $
| 3(1)-5(2x+2)=-17 | | 3r−2r=6 | | 13d-4d-7d+3d+d=6 | | 3x+(1-4x)=-7 | | -12n+17n=-20 | | 28x+42=210 | | y+2=3y-8 | | 20p-18p=18 | | 3y-5(2y+2)=-17 | | 15+2x=2x+24 | | 8p-8=-168 | | 7x+2-4x=-3x+4(x+1) | | 2p-18p=18 | | N-5+8n=13 | | 2x-3=113 | | 15=+2x=2x+24 | | 3x-20+6x+11=90 | | 6(4x=7)=6244 | | 3x-5(2x+2)=-17 | | -2k-2k=4 | | 2(3x-1)=7x-4 | | 3x-20+5x+11=90 | | 5,4=0,24x+1.2 | | 6m+4=10 | | 163+2h=949 | | 2x+14+3x+2+6x-9=180 | | 25-(x-3=(22x+1) | | -19q−-9q+-12=18 | | -1+p/15=-1 | | 0.3x+12=13.2 | | -24−8y=8 | | -2x^2-24x=40 |